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Abstract

We present a new parallel computation model that enables the design of resource-optimal and scalable parallel
algorithms and simplifies their analysis. The model rests on the following novel ideas: it incorporates optimality
relative to a specific sequential algorithm as an integral part, and it measures the quality of a parallel algorithm in
terms of granularity. Inspired by the BSP model, an algorithm in the PRO model is organized as a sequence of
supersteps. The supersteps are not however required to be separated by synchronization barriers.
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I. INTRODUCTION

As Akl in his book on parallel computation [2] notes, a model of computation serves two major purposes.
First, it is used to describe a computer. In this role, a model attempts to capture the essential features of an
existing or contemplated machine while ignoring less important details of its implementation. Second, it is
used as a tool for analyzing problems and expressing algorithms. In this sense, a model is not necessarily
linked to any real computer but rather to an understanding of computation.

In the realm of sequential computation, the Random Access Machine (RAM) is a standard model that
for many years has succeeded in achieving both of these purposes. It has served as an effective model
for hardware designers, algorithm developers, and programmers alike, although one notes that the recent
focus on external memory and cache issues has uncovered a need for more refined models. When it
comes to parallel computation, there is no analogous, universally accepted model. This is in part due to
the complex set of issues inherent in parallel computation.

The performance of a sequential algorithm is adequately evaluated using its execution time, making
the RAM powerful enough for analysis and design. On the other hand, the performance evaluation of
a parallel algorithm involves several metrics, the most important of which are speedup, optimality (or
efficiency), and scalability. To enjoy similar success as that of the RAM, a parallel computation model
should incorporate at least these metrics and be simple at the same time. In light of this and in order
to simplify the design and analysis of resource-optimal, scalable, and portable parallel algorithms, we
propose the Parallel Resource-Optimal (PRO) computation model.
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Council of Norway, The French Ministry of Foreign Affairs and The Ministry of Education, Research and Technology; and by the US
National Science Foundation grant ACI 0203722. Part of this work has previously been published in [1]. Much of the work of the first author
was carried out while completing a PhD at the University of Bergen.
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The PRO model is inspired by the Bulk Synchronous Parallel (BSP) [3] and the Coarse Grained
Multicomputer (CGM) [4] models. The introduction of the BSP model, in which a parallel algorithm
is organized as a sequence of supersteps with distinct computation and communication phases, marked
an important milestone in parallel computation. The model introduced a desirable structure to parallel
programming, and was accompanied by the definition and implementation of communication infrastructure
libraries [5]–[7]. Recently, Bisseling [8] has written a textbook on scientific parallel computation using
the BSP model. From an algorithmic, as opposed to a programming, point of view, however, the relatively
many and machine-specific parameters involved in the BSP model make the design and analysis of
algorithms somewhat cumbersome. The CGM model partially addresses this limitation as it involves only
two parameters, the input size and the number of processors. The CGM model is a specialization of the
BSP model in that the communication phase of a superstep is required to consist of single long messages
rather than multiple short ones. A drawback of the CGM model is the lack of an accurate performance
measure; the number of communication rounds (supersteps) is usually used as a quality measure, but as
we shall see later in this paper, this measure is sometimes inaccurate.

The PRO model inherits the advantages offered by the BSP and the CGM models. It also reflects
a compromise between further theoretical and practical considerations in the design of optimal and
scalable parallel algorithms. In an interesting survey paper [9], Maggs et al. suggest that an ideal parallel
computation model be designed within “the philosophy of simplicity and descriptivity balanced with
prescriptivity”. The PRO model is designed with this philosophy in mind.

Three key features distinguish the PRO model from existing parallel computation models. These are:
relativity, resource-optimality, and a new quality measure referred to as granularity.

Relativity pertains to the fact that the design and analysis of a parallel algorithm in PRO is done
relative to the time and space complexity of a specific sequential algorithm. As a consequence of this, the
parameters involved in the analysis of a PRO-algorithm are: the number of processors p, the input size
n, and the time and space complexity of the reference sequential algorithm Aseq. Note that speedup and
optimality are metrics that are relative in nature as they are expressed with respect to some sequential
algorithm, and this forms the major reason for our focus on relativity. The notion of relativity is also
relevant from a practical point of view since a parallel algorithm is usually not designed from scratch,
but rather starting from a sequential algorithm.

A PRO-algorithm is required to be asymptotically both time- and space-optimal, hence resource-optimal.
A parallel algorithm is said to be asymptotically time- (or work-) optimal if the overall computation and
communication cost involved in the algorithm is proportional to the time complexity of the sequential
algorithm used as a reference. Similarly, it is said to be asymptotically space-optimal if the overall memory
space used by the algorithm is of the same order as the memory usage of the underlying sequential version.
As a consequence of its time-optimality, a PRO-algorithm always yields linear speedup relative to the
reference sequential algorithm, i.e., the ratio between the sequential and parallel runtime is a linear function
of the number of processors p. The resource optimality requirement set in the PRO model enables one
to concentrate only on practically useful parallel algorithms. The fact that optimality is required only
asymptotically leaves enough slackness for easy design and analysis of algorithms.

Before turning to the quality measure of a PRO algorithm, let us emphasize the consequences of the
novel notion of relativity. In PRO, instead of directly comparing algorithms that solve the same problem,
we employ a two-leveled approach. First, select a particular space and time complexity based on some
sequential algorithm Aseq. Then, compare parallel algorithms that are resource-optimal with respect to Aseq.
The latter comparison, i.e., the quality of a PRO algorithm, is measured by the range of values parameter
p can assume while linear speedup is maintained. It is captured by an attribute of the model called the
granularity function Grain(n). In particular, a PRO-algorithm with granularity Grain(n) is required to yield
optimal speedup, within a constant factor, for all values of p such that p = O(Grain(n)); in other words,
the algorithm is fully scalable for p = O(Grain(n)). The higher the function value Grain(n), the better the
algorithm. The final evaluation of a PRO-algorithm for a given problem must of course take into account
both the time and space complexity of the reference sequential algorithm and the granularity function. A
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new result will typically be presented as follows: ‘We have given a PRO-algorithm for problem P relative
to sequential time T (n) and space S(n) which has granularity Grain(n).’ This simply means that for
any number of processors p and input size n with p = O(Grain(n)), there is a parallel algorithm in the
PRO model for problem P where the parallel runtime is O(T (n)/p) and each processor uses O(S(n)/p)
memory.

The rest of the paper is organized as follows. In Section II we highlight the limitations of a few
relevant existing parallel computation models, to justify the need for the introduction of the new model
PRO. In Section III the PRO model is presented in detail and in Section IV it is systematically compared
with a selection of existing parallel models. In Section V we illustrate how the model is used in the
design and analysis of an algorithm using the matrix multiplication and list ranking problems as concrete
examples. In Section VI we give PRO-algorithms for two commonly used communication primitives, one-
to-all broadcast and all-to-all communication. In Section VII we discuss observations made from related
experimental studies. We conclude the paper in Section VIII with some remarks.

II. EXISTING MODELS AND THEIR LIMITATIONS

There exists a plethora of parallel computation models in the literature. Our brief discussion in this
section focuses on just three of them, the Parallel Random Access Machine (PRAM), the BSP, and the
CGM; we will also in passing mention a few other models. The PRAM is discussed not to reiterate its
failure to capture real machine characteristics but rather to point out its limitations even as a theoretical
model. The BSP and CGM models are discussed because the PRO model is derived from them. The
models discussed in this section are in a loose sense divided in two groups as ‘dedicated’ (to either
software or hardware) and ‘bridging’ (between software and hardware) models.

A. Dedicated models
1) PRAM: In its standard form, the PRAM model [10], [11] consists of an arbitrarily large number

of processors and a shared memory of unbounded size that is uniformly accessible to all processors. In
this model, processors share a common clock and operate in lock-step, but they may execute different
instructions in each cycle.

The PRAM is a model for fine-grain parallel computation as it supposes that the number of processors
can be arbitrarily large. Usually, it is assumed that the number of processors is a polynomial in the input
size. However, practical parallel computation is typically coarse-grain. In particular, on most existing
parallel machines, the number of processors is several orders of magnitude less than the input size.
Moreover, the assumption that memory is uniformly accessible to all processors is in obvious disagreement
with the reality of practical parallel computers.

Despite its serious limitation of being an ‘idealized’ model for parallel computation, the standard
PRAM model still serves as a theoretical framework for investigating the maximum possible computational
parallelism available in a given task. Specifically, on this model, the NC versus P -complete dichotomy
[12] is used to reflect the ease/hardness of finding a parallel algorithm for a problem.

Recall that, on the PRAM model, a parallel algorithm is considered ‘efficient’ if its runtime is polylog-
arithmic, i.e., O(log kn) for some fixed constant k, while the number of processors it uses is polynomial in
the input size n. The class NC consists of problems that can be solved by such efficient parallel algorithms.
By simulation, an NC-algorithm can be converted into a polynomial time sequential algorithm. Thus, the
class NC is included in the class P , i.e., NC ⊆ P . On the other hand, whether or not P ⊆ NC is
an open problem in complexity theory. The general belief is that P 6⊆ NC, and hence that there are
problems in P that do not have NC-algorithms. The class of P -complete problems consists of the most
likely candidates for such problems. Informally, a problem is said to be P -complete if an NC-algorithm
for it implies that all problems in P would have NC-algorithms.

Unfortunately, the NC versus P -complete dichotomy has several limitations. First, P -completeness
does not depict a full picture of non-parallelizability since the runtime requirement for an NC parallel
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algorithm is so stringent that the classification is confined to the case where up to polynomial number
of processors in the input size is available. For example, there are P -complete problems for which less
ambitious, but still satisfactory, runtime can be obtained by parallelization in PRAM [13]. In a fine-
grained setting, since the number of processors p is a function of the input size n, it is customary to
express speedup as a function of n. Thus the speedup obtained using an NC-algorithm is sometimes
referred to as exponential. In a coarse-grained setting, speedup is expressed as a function of only p and
some recent results [4], [14]–[16] show that this approach is practically relevant.

Second, an NC-algorithm is not necessarily work-optimal, and thus not resource-optimal, considering
runtime and memory space as resources one wants to use efficiently.

Third, even if we restrict ourselves to work-optimal NC-algorithms and apply Brent’s scheduling
principle, which says an algorithm in theory can be simulated on a machine with fewer processors by
only a constant factor more work, implementations of PRAM algorithms often do not reflect this optimality
in practice [17]. This is mainly because the PRAM model does not account for non-local memory access
(communication), and a Brent-type simulation relies heavily on cheap communication.

a) Enhanced PRAM’s: To overcome the defects of the PRAM related to its failure of capturing
real machine characteristics, the advocates of shared memory models propose several modifications to the
standard PRAM model. In particular, they enhance the standard PRAM model by taking practical machine
features such as memory access, synchronization, latency and bandwidth issues into account. Pointers to
the PRAM family of models can be found in [9].

2) Distributed memory models: Critics of shared memory models argue that the PRAM family of
models fails to capture the nature of existing parallel computers with distributed memory architectures.
Examples of distributed memory computational models suggested as alternatives include the Postal Model
[18] and the Block Distributed Memory (BDM) model [19]. Other categories of parallel models such as
low-level, hierarchical memory, and network models are briefly reviewed in [9].

These models are very close to the architecture considered and the associated algorithms are often not
portable from one architecture to another.

B. Bridging models
Valiant in his seminal paper [3] underscored that a successful parallel computation model needs to act

as an efficient ‘bridge’ between software and hardware. He introduced the BSP as a candidate bridging
model and argued that it could serve as a standard model for parallel computation.

1) BSP: The BSP model consists of a collection of processor/memory modules connected by a router
that can deliver messages in a point-to-point fashion. An algorithm in this model is divided into a
sequence of supersteps separated by barrier synchronizations. A superstep has distinct computation and
communication phases. In a superstep, a processor may send (and receive) at most h messages. Such
a communication pattern is called an h-relation and the basic task of the router is to realize arbitrary
h-relations. Note that, here, h relates to the total size of communicated data during a superstep.

The BSP model uses the four parameters, n, p, L, and g. Parameter n is the problem size, p is the
number of processors, L is the minimum time between successive synchronization operations, and g is the
ratio of overall system computational capacity per unit time divided by the overall system communication
capacity per unit time.

The introduction of the BSP model initiated several subsequent studies suggesting various modifications.
For example, Culler et al. [20] proposed a model that extends the BSP model by allowing asynchronous
execution and by better accounting for communication overhead. Their model is coined LogP, an acronym
for the four parameters (besides the problem size n) involved. A common feature of the BSP, LogP, and
other related models is their lack of simplicity: each model involves relatively many parameters making
analysis and design of algorithms cumbersome.
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2) CGM: The CGM model [4], [14] was proposed in an effort to retain the advantages of BSP while
keeping the model simple. The CGM model consists of p processors, each with O(n/p) local memory,
interconnected by a router that can deliver messages in a point-to-point fashion. A CGM algorithm
consists of an alternating sequence of computation rounds and communication rounds separated by barrier
synchronizations. A computation round is equivalent to the computation phase of a superstep in the BSP
model. A communication round usually consists of a single h-relation with

h ≈ n/p. (1)

An important advantage of the CGM model compared to BSP is that all the information sent from one
processor to another in one communication round is packed into one long message, striving to minimize
communication overhead and latency. Thus, the only parameters involved in the CGM model are p and
n, a fact that simplifies design and analysis of algorithms.

Assumption (1) has interesting implications on the design and analysis of algorithms. To make these
implications more apparent, we first distinguish between parallel algorithms where the communication
time to computation time ratio is a constant and those algorithms where the ratio is some function of the
input size.

Suppose we have a CGM algorithm where the communication time to computation time ratio is a
constant. Suppose also that assumption (1) holds. Then, since each superstep has a complexity of Θ(h) =
Θ(n/p), the only parameter of the model that distinguishes different algorithms is the number of supersteps.
This direction was followed for instance in [14] where a long list of algorithms that are designed under
these assumptions is given.

Nevertheless there exists a large class of problems for which these assumptions are not known to hold
in that we do not know CGM algorithms where the communication time to computation time ratio is a
constant. Problems with super-linear time sequential algorithms, such as sorting and matrix multiplication,
belong to this class. For such problems and their corresponding parallel algorithms, communication alone
cannot be a complexity measure and therefore one needs to consider computation as well.

Moreover, even for problems whose algorithms are such that the stated ratio is constant, assumption (1)
turns out to be quite restrictive. We will illustrate this with the list ranking problem which we will discuss
in more details in Section V-B. There we will see that CGM fails to identify competitive algorithms when
using the number of supersteps as a quality measure.

III. THE PRO MODEL DEFINITION

The PRO model is an algorithm design and analysis tool used to deliver a practical, optimal, and scalable
parallel algorithm relative to a specific sequential algorithm whenever this is possible. Let Time(n) and
Space(n) denote the time and space complexity of a specific sequential algorithm for a given problem
with input size n. Let Grain(n) be a function of n. The PRO model is defined to have the attributes given
in Table I. In the following we will argue for each of these attributes.

As discussed in the LogP paper [20], technological factors are forcing parallel systems to converge
towards systems formed by a collection of essentially complete computers connected by a robust com-
munication network. The machine model assumption of PRO is consistent with this convergence and
maps well on several existing parallel computer architectures. The memory requirement M = O(Space(n)

p
)

ensures that the space utilized by the underlying sequential algorithm is uniformly distributed among the
p processors. Since we may, without loss of generality, assume that Space(n) = Ω(n), the implication
is that the private memory of each processor is large enough to store its ‘share’ of the input and any
additional space the sequential algorithm might require. When Space(n) = Θ(n), note that the input data
must be uniformly distributed on the p processors. In this case the machine model assumption of PRO is
similar to the assumption in the CGM model [4].

The coarseness assumption p ≤ M is consistent with the structure of existing parallel machines and
those to be built in the foreseeable future. The assumption is required to simplify the implementation of
gathering messages on or broadcasting messages from a single processor.
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TABLE I

ATTRIBUTES OF THE PRO MODEL

Machine Model: The underlying machine is assumed to consist of p processors
each of which has a private memory of size M = O(Space(n)

p
).

The processors are assumed to be interconnected by some
communication device (such as an interconnection network or
a shared memory) that can deliver messages in a point-to-point
fashion. A message can consist of several machine words.

Coarseness Assumption: The size of the local memory of each processor is assumed to
be big enough to store p words (i.e. the relationship p ≤ M
is assumed to hold).

Execution Model: A PRO algorithm is organized as a sequence of supersteps,
each consisting of a local computation phase and an interpro-
cessor communication phase. In particular, in each superstep,
each processor

• sends at most one message to every other processor,
• sends and receives at most M words in total,
• performs local computation.

Runtime Analysis: Both computation and communication are accounted for in the
runtime analysis of a PRO algorithm. In particular,

• a processors is charged a unit of time per operation
performed locally, and

• a processor is charged a unit of time per machine word
sent or received.

Optimality Requirement: For any value p = O(Grain(n)), a PRO algorithm is required
to have

• at most o(Time(n)
p2 ) supersteps, and

• a parallel runtime Time(n, p) = O(Time(n)
p

).
The granularity function Grain(n) measures the quality of the
algorithm.

In terms of execution, a PRO-algorithm consists of a sequence of supersteps (or rounds). The length of
a superstep on each processor is determined by the sum of the time used for communication and the time
used for local computation. The length of a superstep s in the parallel algorithm seen as a whole, denoted
by Times(n, p), is the maximum over the lengths of the superstep on all processors. We can conceptually
think as if the supersteps are synchronized by a barrier set at the end of the longest superstep across the
processors. However, in PRO the processors are not in reality required to synchronize at the end of each
superstep. The parallel runtime Time(n, p) of the algorithm is the sum of the lengths of all the supersteps.
Notice that the hypothetical barriers result in only a constant factor more time compared with an analysis
that does not assume the barriers.

In PRO, since a processor sends at most one message to every other processor in each superstep, each
processor is involved in at most 2(p − 1) messages per superstep. Therefore, the requirement Steps =
o(Time(n)

p2 ) on the number of supersteps implies that the overall time paid per processor for communication
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overhead and latency is o(Time(n)/p) and hence can be neglected from the analysis since our goal is
to achieve an O(Time(n)/p) parallel runtime. Such a statement would not hold if we were to replace
the little-o in the requirement for the number of supersteps by a big-O. Had we allowed O(Time(n)/p2)
supersteps, the corresponding latency could be of the same order of magnitude as the computation or
communication time and the success of an execution would then depend on the particular parameters of
the concrete machine. Since latency is a parameter that is determined by fundamental physical restrictions
(the speed of light) and will not as easily improve as other architectural parameters, such a possible
dependency on latency of an algorithm is not desirable.

On the other hand, the bandwidth of the underlying architecture is not subject to such principal
restrictions and in fact computation and communication would contribute to the overall runtime in similar
terms. Therefore, it is important that bandwidth is accounted for. To this end, in PRO each processor pays
a unit of time per word sent and received. This is not an unrealistic assumption noting that the network
throughput (accounted in machine words) on modern architectures such as high performance clusters is
relatively close to the CPU frequency and to the CPU/memory bandwidth.

The condition Time(n, p) = O(Time(n)
p

) requires that a PRO-algorithm be optimal and yield linear
speedup relative to the sequential algorithm used as a reference. This requirement ensures the potential
practical use of the parallel algorithm.

The function Grain(n) is a quality measure for a PRO algorithm, i.e., for any number of processors p
such that p = O(Grain(n)), a PRO algorithm gives a linear speedup with respect to the reference sequential
algorithm. The objective in designing a PRO algorithm is to make Grain(n) as high as possible, thereby
increasing its scalability. As the following observation shows, there is an upper bound on Grain(n) set
by the complexity of the reference sequential algorithm.

Observation 1: A PRO algorithm relative to a sequential algorithm with runtime
O(Time(n)) and space requirement O(Space(n)) has maximum granularity

Grain(n) = o
(√

Space(n)
)

. (2)

A PRO algorithm that achieves this is said to have optimal grain.
Observation 1 is due to

(i) the limit on the memory size of each processor,
(ii) the coarseness assumption, and

(iii) the bound on the number of supersteps.
The limit on the size of the private memory of each processor (M = O(Space(n)

p
)) together with the

coarseness assumption p ≤ M imply p = O(
√

Space(n)). The fact that the number of supersteps of a

PRO-algorithm should be Steps = o(Time(n)/p2), gives p = o(
√

(Time(n)/Steps)) upon resolving and
we clearly have Steps ≥ 1. Finally, note that Time(n) ≥ Space(n), since we may reasonably assume that
all memory is initialized.

Since a PRO-algorithm yields linear speedup for any p = O(Grain(n)), a result like Brent’s scheduling
principle is implicit for these values of p. But Observation 1 shows that we cannot start with an arbitrary
number of processors and efficiently simulate on fewer processors. So Brent’s scheduling principle does
not hold with full generality in the PRO model, which is in accordance with practical observations.

We note that there exists a slightly similar notion to Grain(n) in the literature. This notion, called
iso-efficiency function, is suggested as an analytical tool for evaluating the scalability of a parallel system
(parallel algorithm together with a parallel architecture) [21], [22]. The iso-efficiency function, which is
defined only for scalable algorithms, determines the ease with which a parallel system achieves speedups
increasing in proportion to the number of processors involved. A small iso-efficiency function implies
that a small increase in problem size is sufficient for the efficient utilization of an increasing number
of processors, indicating that the parallel system is highly scalable. A large iso-efficiency function, on
the other hand, indicates a poorly scalable parallel system. Thus, the iso-efficiency function, which is
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TABLE II

COMPARISON OF PARALLEL COMPUTATIONAL MODELS

PRAM [10] QSM [23] BSP [3] LogP [20] CGM [14] PRO
synch. lock-step bulk-synch. bulk-synch. asynch. asynch. asynch.
memory sh. sh. dist. dist. priv. priv.
commun. SM SM MP MP MP/SM MP/SM
parameters n p, g, n p, g, L, n p, g, l, o, n p, n p, n,Aseq

granularity fine fine coarse fine coarse Grain(n)
speedup NA NA NA NA NA Θ(p)
optimal NA NA NA NA NA rel. Aseq

quality time time time time rounds Grain(n)

expressed as a function of p, is in a sense “inversely” related to Grain(n) in PRO. Despite this slight
resemblance, the two notions are fundamentally different. Grain(n) is an attribute of a model; it is in
fact a quality measure for a PRO-algorithm. The iso-efficiency function is not related to any computation
model. Moreover, it is not always possible to get an analytic expression for the iso-efficiency function,
even if the parallel algorithm is highly scalable in practice [21].

The design of a PRO-algorithm may sometimes involve subroutines for which there do not exist
sequential counterparts. Examples of such tasks include communication primitives such as broadcasting,
data (re)-distribution routines, and load balancing routines. Such routines are often required in various
parallel algorithms. With a slight abuse of notation, we will call such parallel routines PRO-algorithms if
the overall computation and communication cost is linear in the input size to the routines.

IV. COMPARISON WITH OTHER MODELS

In this section we compare the PRO model with PRAM, BSP, LogP, CGM, and the Queuing Shared
Memory (QSM) model [23] (the QSM model is interesting since it is a shared memory model based on
some BSP principles). Our tabular format for comparison is inspired by a similar presentation in [23].
The columns of Table II are labeled with names of models and some relevant features of a model are
listed along the rows.

The synchrony assumption of the model is indicated in the row labeled synch. Lock-step indicates
that the processors are fully synchronized at each step (of a universal clock), without accounting for
synchronization. Bulk-synchrony indicates that there can be asynchronous operations between synchro-
nization barriers. The row labeled memory shows how the model views the memory of the parallel
computer: ‘sh.’ indicates globally accessible shared memory, ‘dist.’ stands for distributed memory and
‘priv.’ is an abstraction for the case where the only assumption is that each processor has access to private
(local) memory. In the last variant the whole memory could either be distributed or shared. The row
labeled commun. shows the type of interprocessor communication assumed by the model. Shared memory
(SM) indicates that communication is effected by reading from and writing to a globally accessible
shared memory. Message-passing (MP) denotes the situation where processors communicate by explicitly
exchanging messages in a point-to-point fashion. The MP abstraction hides the details of how the message
is routed through the interprocessor communication network.

The parameters involved in the model are indicated in the row labeled parameters. The number of
processors is denoted by p, n is the input size, Aseq is the reference sequential algorithm, l is the
communication cost (latency), L is a single parameter that accounts for the sum of latency (l) and the
cost for a barrier synchronization, i.e. the minimum time between successive synchronization operations,
g is the bandwidth gap, and o is the overhead associated with sending or receiving a message. Note that
the machine characteristics l and o are are taken into account in PRO, even though they are not explicitly
used as parameters. Latency is taken into consideration since the length of a superstep is determined
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by the sum of the computational and communication cost. Communication overhead is hidden by the
PRO-requirement that states Steps = o(Time(n)

p2 ).
The row labeled granularity indicates whether the model is fine-grained, coarse-grained or a more

precise measure is used. We say that a model is coarse-grained if it applies to the case where n � p and
call it fine-grained if it relies on using up to a polynomial number of processors in the input size. In PRO
granularity is exactly the quality measure Grain(n), and appears as one of the attributes of the model.

The rows labeled speedup and optimal indicate the speedup and resource optimality requirements
imposed by the model. Whenever these issues are not directly addressed by the model or are not applicable,
the word ‘NA’ is used. Note that these requirements are ‘hard-wired’ in the model in the case of PRO.
The label ‘rel. Aseq’ means that the algorithm is optimal relative to the time and space complexity of Aseq.
We point out that the goal in the design of algorithms using the CGM model [4], [14] is usually stated
as that of achieving optimal algorithms, but the model per se does not impose an optimality requirement.

The last row indicates the quality measure of an algorithm designed using the different models. For all
other models except CGM and PRO, the quality measure is runtime. In CGM, the number of supersteps
(rounds) is usually presented as a quality measure. In PRO the quality measure is granularity, one of the
features that makes PRO fundamentally different from all existing parallel computation models.

V. ALGORITHM EXAMPLES

In this section we use two examples to illustrate how the PRO model is used. In each example, we
start with a given sequential algorithm and then design and analyze a parallel algorithm relative to it. Our
first example is the standard matrix multiplication algorithm with three nested for-loops. This example is
chosen for its simplicity, since our objective at this stage is to illustrate the use of a new model rather
than solving a “difficult” problem. The second example is an algorithm for list ranking, a basic routine
used in many parallel graph algorithms. This example is interesting as a CGM-analysis would regard it
inefficient, despite the fact that it is efficient in practice.

A. Matrix multiplication
Consider the problem of computing the product C of two m×m matrices A and B (input size n = m2).

We want to design a PRO-algorithm relative to the standard sequential matrix multiplication algorithm
which has Time(n) = O(n

3
2 ) and Space(n) = O(n).

We assume that the input matrices A and B are distributed among the p processors P0, ..., Pp−1 so that
processor Pi stores rows (respectively columns) m

p
· i + 1 to m

p
· (i + 1) of A (respectively B). The output

matrix C will be row-partitioned among the p processors in a similar fashion. Notice that with this data
distribution each processor can, without communication, compute a block of m2

p2 of the m2

p
entries of C

expected to reside on it. In order to compute the next block of m2

p2 entries, processor Pi needs the columns
of matrix B that reside on processor Pi+1. In each superstep the processors in the PRO algorithm will
therefore exchange columns in a round-robin fashion and then each will compute a new block of results.
Note that each column exchanged in a superstep constitutes one single message. Note also that the initial
distribution of the rows of matrix A remains unchanged. In Algorithm 1, we have organized this sequence
of computation and communication steps in a manner that meets the requirements of the PRO model.

Algorithm 1 has p supersteps (Steps = p). In each superstep, the time spent in locally computing each
of the m2/p2 entries is Θ(m) resulting in local computing time Θ(m3/p2) = Θ(n

3
2 /p2) per superstep.

Likewise, the total size of data (words) exchanged by each processor in a superstep is Θ(m2/p) =
Θ(n/p). Thus, the length of a superstep s is Times(n, p) = Θ(n

3
2 /p2 + n/p). Note that for p = O(

√
n),

Times(n, p) = Θ(n
3
2 /p2). Hence, for p = O(

√
n), the overall parallel runtime of the algorithm is

Time(n, p) =
∑
Steps

Θ(n
3
2 /p2) = Θ(n

3
2 /p) = Θ(Time(n)/p). (3)



www.manaraa.com

9

Algorithm 1: Matrix multiplication
Input: Two m×m matrices A and B. The rows (columns) of A (B) are divided into m/p

contiguous blocks, and stored on processors P0, P1, . . . Pp−1, respectively.
Output: The product matrix C where the rows are stored in contiguous blocks across the p

processors.
for superstep s = 1 to p do

foreach processor Pi do
Pi computes the local sub-matrix product of its rows and current columns;
P(i+1) mod p sends its current block of columns to Pi;
Pi receives a new current block of columns from P(i+1) mod p;

Noting that Space(n) = Θ(n), we see that the memory restriction of the PRO model is respected,
i.e., each processor has enough memory size to handle the transactions. In order to be able to neglect
communication overhead, the condition on the number of supersteps, which in this case is just p, should
be met. In other words, we need p = o(Time(n)/p2) = o(n

3
2 /p2), which is true for p = o(

√
n). Thus the

granularity function of the PRO-algorithm is Grain(n) = o(
√

n).
The following lemma summarizes this result.
Lemma 1: Multiplication of two m × m matrices has a PRO-algorithm with Grain(n) = o(m), relative

to a sequential algorithm with Time(n) = m3 and Space(n) = m2 (input size n = m2).
From Observation 1, we note that Algorithm 1 has optimal grain. Note that on a relaxed model, where

the assumption that p ≤ M is not present, the strong regularity of matrix multiplication and the exact
knowledge of the communication pattern allow for algorithms that have an even finer granularity than
m. For example, a systolic matrix multiplication algorithm has a granularity of m2. However, PRO is
intended to be applicable for general problems (including those with irregular communication pattern)
and practically relevant parallel systems.

B. List Ranking
The list ranking problem (LR) is the following: given a linked list as an input, determine the distance

of every item in the list from the end of the list. This problem has an obvious linear time sequential
solution and a classical question in the beginning of parallel computing has been to investigate how well
it can be solved in parallel (see for example [24]–[26]).

Algorithm 2: List Ranking using Pointer Jumping
Input: An integer n and a list of length n given by a vector next; A vector dist (initialized with

1) where dist[i] stores the distance from item i in the list to item next[i].
foreach Processor Pi do

while n > 0 do
dist[i] = dist[i] + dist[next[i]];
next[i] = next[next[i]];
n = n/2;

One parallel solution for LR uses pointer jumping; Algorithm 2 uses this technique. The algorithm has
a logarithmic number of phases. In each phase, each list item updates its distance with the distance that
is known to its neighbor and then updates the neighbor.

This algorithm is easily translated into a CGM algorithm: phases correspond to supersteps in which
the processors communicate their respective values dist[i] and next[i]. The number of supersteps
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is log n (or log p after some refinement). In any case, the number of supersteps reflects a super-linear
computation cost for the entire algorithm, which captures very well the fact that this algorithm is not
efficient.

Algorithm 3: Recursive List Ranking
Input: An integer n and a list of length n given by a vector next; A vector dist (initialized with

1) where dist[i] stores the distance from item i in the list to item next[i].
Find a large independent set I;
Compute the sublist next′ that is generated by I and the relative distances dist′ between
neighboring elements in I;
Recurse on next′ and dist′;
Using the values obtained from the recursion, update the remainder of the lists next and dist
appropriately;

Other, more sophisticated, solutions for LR use the random mating technique. Algorithm 3 illustrates
such an approach. The main idea here is to determine a large independent set in the list and then to apply
recursion on either this independent set or its complement. The translation of such algorithms to CGM
is usually straightforward and the analysis with CGM is simple. The recursion introduces a logarithmic
number of supersteps and hence the total processing cost in terms of the CGM model is super-linear.

However, the overall work in each recursion level can be made linear in the actual size of the list and so
the work load decreases with every step of the recursion. A geometric series argument can be applied to
show that the overall resource utilization is linear. Hence, contrary to what a CGM-analysis suggests, this
family of algorithms is in fact efficient. Thus the LR example exhibits a case where a CGM-analysis is
not able to distinguish between a “bad” algorithm (pointer jumping) and a “good” one (random mating).

The PRO model provides a different view of Algorithm 3. Assuming that the chosen independent set at
each recursion level is well balanced among the processors, it is easy to show that Time(n, p) = Θ(n/p) =
Θ(Time(n)/p). In order to be able to neglect communication overhead, we need to meet the condition
on the number of supersteps, which for this algorithm is log n. This means we need p2 = o( n

log n
), or

taking square roots of both sides, p = o(
√

n
log n

). With Space(n) = Θ(n), the PRO memory restriction is
respected.

The following lemma summarizes these results.
Lemma 2: List ranking on n elements has a PRO-algorithm with Grain(n) = o(

√
n

log n
), relative to a

sequential algorithm with Time(n) = O(n) and Space(n) = O(n).
Note that this algorithm does not have an optimal grain; yet it is a PRO algorithm.

VI. COMMUNICATION PRIMITIVE EXAMPLES

A good parallel computation model should have a selection of algorithms for primitive communication
tasks available in its algorithm design tool-box. The PRO model is intended to meet this demand. In this
section we present two such primitives: one-to-all broadcast and all-to-all communication.

A. One-to-all broadcast
Algorithm 4 outlines a PRO-algorithm for the basic communication primitive one-to-all broadcast. Since

there is no sequential basis algorithm in this case, we want an algorithm whose overall communication
and computation cost is linear in the input and output sizes. More precisely, we consider the situation
where the input consists of a vector of size m on a single processor and the output should be a copy of
this vector on each of the p processors, and we want an algorithm that achieves this in O(m) time using
O(m) memory on each processor.
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Algorithm 4: One-to-All Broadcast
Input: A vector V of size m on processor P0

Output: A copy of V on each processor
S1 P0 divides V into p equal sized parts;

P0 sends the ith part of V to processor Pi, for each 0 < i < p;
foreach processor Pi, i > 0 do

processor Pi receives the ith part from P0;
S2 foreach processor Pi do

Pi sends out the ith part to Pj , for each j 6= i and 0 < j < p.
foreach processor Pj ,j 6= 0 do

Pj receives the ith part from Pi, for each i 6= j and 0 < i < p

Algorithm 5: All-to-All communication
Input: Each processor has a vector V of size m.
Output: Data is redistributed among the processors. Each processor collects the new data in a vector

W of size m.
S1 foreach processor Pi, i ≥ 0 do

Pi groups and calculates the size of the data in V destined to each processor Pj , 0 ≤ j < p;
Pi sends out to each Pj , for 0 ≤ j < p, the size of data in V that it will receive from Pi.

foreach processor Pj ,j ≥ 0 do
Pj receives from each Pi, 0 ≤ i < p, the size of data that Pi will send to it at the next step;
Pj calculates the total size of data it will receive;
Pj allocates the required size for W .

S2 foreach processor Pi, i ≥ 0 do
Pi sends to each processor Pj ,0 ≤ j < p the data destined to Pj

foreach processor Pj ,j ≥ 0 do
Pj receives from each Pi, 0 ≤ i < p, the data it stores in W

Lemma 3: The PRO Algorithm 4 implements one-to-all broadcast of m memory words in two super-
steps using O(m) time and O(m) space per processor, for any number of processors p ≤ m.

Proof: First, we note that the algorithm correctly broadcasts the desired vector V , while observing
the space restriction, in two supersteps. We turn to the timing. In step S1 processor P0 in total sends out
(p− 1)m/p words and each of the other processors receives a message of size m/p. In step S2 processor
Pi in total sends out p−2

p
m words. Processor Pj , j 6= 0, in total receives p−1

p
m words.

The total time is dominated by communication which can be bounded as follows:

(p− 1)m/p + m/p +
p− 2

p
m +

p− 1

p
m = (4)

m/p(p + p− 2 + p− 1) < 3m (5)

for total time O(m) as claimed.

B. All-to-all communication
The primitive all-to-all communication redistributes data among processors. Each processor has an input

vector of size m and it sends each of its elements to every other processor. Algorithm 5 outlines a PRO
algorithm for such a primitive.
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Lemma 4: The PRO Algorithm 5 implements all-to-all communication of m memory words in two
supersteps using O(m) time and O(m) space per processor, for any number of processors p ≤ m.

Proof: First, we note that the algorithm correctly redistributes the data stored in V among the
processors in two supersteps. Second, the space conditions are respected when p ≤ m. Concerning timing,
in step S1, each processor sends out p−1 words and each processor receives p−1 words. In step S2, each
processor sends out at most m words and receives O(m) words. Therefore, for any number of processors
p ≤ m, the total time is O(m).

VII. RELATED WORK

This work is a culmination of several previous and concurrent studies [25], [27]–[30]. One of the
common objectives in these studies has been to experimentally verify the relevance of the PRO model.
Here we give a brief summary of the observations made in these studies.

• There is an ongoing project whose aim is to develop a library for implementing PRO algorithms. This
library called Soft Synchronized Computing in Rounds for Adequate Parallelization (SSCRAP) [31]
offers a framework that allows for implementations of PRO algorithms that are portable on a large
variety of parallel and distributed platforms.

• Algorithms that a posteriori fit within the PRO model for such problems as permutation genera-
tion [32], sorting [33], list ranking [25], matrix multiplication [27], connected components, interval
graphs, permutation graphs [29], [34] have been implemented using our tools. These algorithms have
been found to offer almost linear speedup and a high degree of scalability.

• The aforementioned experiments demonstrated that the bound on the number of supersteps required
in the PRO model effectively hides latency. In particular, contrary to the recommendation in CGM,
algorithms with a number of supersteps that is a growing function in n (and not in p) show satisfactory
performance [25], [35]. The results also showed that performance is mainly determined by computing
power and bandwidth restrictions.

VIII. CONCLUSION

We have introduced a new parallel computation model (called PRO) that enables the development of
efficient and scalable parallel algorithms and simplifies their complexity analysis.

The distinguishing features of the PRO model are the novel focus on relativity, resource-optimality,
and a new quality measure (granularity). In particular, the model requires a parallel algorithm to be both
time- and space-optimal relative to an underlying sequential algorithm. Having optimality as a built-in
requirement, the quality of a PRO-algorithm is measured by the maximum number of processors that
could be used while the optimality of the algorithm is maintained.

The focus on relativity has theoretical as well as practical justifications. From a theoretical point of
view, the performance evaluation metrics of a parallel algorithm includes speedup and optimality, both
of which are always expressed relative to some sequential algorithm. Moreover, there is an inherent
asymmetry between sequential and parallel computation. A parallel algorithm would always imply a
sequential algorithm, whereas the converse is usually not true. Thus, in a sense, it is natural to think of
an underlying sequential algorithm whenever one speaks of a parallel algorithm. From a practical point
of view, one notes that the development of a parallel algorithm is often built on some known sequential
algorithm.

The fact that optimality is incorporated as a requirement in the PRO model enables one to concentrate
only on parallel algorithms that are practically useful.

However, the PRO model is not just a collection of some ‘ideal’ features of parallel algorithms, it
is also a means to achieve these features. In particular, the attributes of the model capture the salient
characteristics of a parallel algorithm that make its practical optimality and scalability highly likely. In
this sense, it can also be seen as a parallel algorithm design scheme. Moreover, the simplicity of the
model eases analysis.



www.manaraa.com

13

We believe that the PRO model is a step forward towards the identification of problems for which
‘practically good’ parallel algorithms exist. Much work remains to be done, and we hope that other
members of the research community will join in.
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